《高中數(shù)學教學設(shè)計優(yōu)秀14篇》
作為一位杰出的教職工,常常要根據(jù)教學需要編寫教學設(shè)計,教學設(shè)計是連接基礎(chǔ)理論與實踐的橋梁,對于教學理論與實踐的緊密結(jié)合具有溝通作用。教學設(shè)計應該怎么寫才好呢?讀書破萬卷,下筆如有神,這里是編輯幫助大家收集的14篇高中數(shù)學教學設(shè)計的相關(guān)文章,歡迎參考。
高中數(shù)學教學設(shè)計 篇1
一、概述
教材內(nèi)容:等比數(shù)列的概念和通項公式的推導及簡單應用教材難點:靈活應用等比數(shù)列及通項公式解決一般問題教材重點:等比數(shù)列的概念和通項公式
二、教學目標分析
1、知識目標
1)
2)掌握等比數(shù)列的定義理解等比數(shù)列的`通項公式及其推導
2.能力目標
1)學會通過實例歸納概念
2)通過學習等比數(shù)列的通項公式及其推導學會歸納假設(shè)
3)提高數(shù)學建模的能力
3、情感目標:
1)充分感受數(shù)列是反映現(xiàn)實生活的模型
2)體會數(shù)學是來源于現(xiàn)實生活并應用于現(xiàn)實生活
3)數(shù)學是豐富多彩的而不是枯燥無味的
三、教學對象及學習需要分析
1、教學對象分析:
1)高中生已經(jīng)有一定的學習能力,對各方面的知識有一定的基礎(chǔ),理解能力較強。并掌握了函數(shù)及個別特殊函數(shù)的性質(zhì)及圖像,如指數(shù)函數(shù)。之前也剛學習了等差數(shù)列,在學習這一章節(jié)時可聯(lián)系以前所學的進行引導教學。
2)對歸納假設(shè)較弱,應加強這方面教學
2、學習需要分析:
四、教學策略選擇與設(shè)計
1、課前復習
1)復習等差數(shù)列的概念及通向公式
2)復習指數(shù)函數(shù)及其圖像和性質(zhì)
2.情景導入
高中數(shù)學教學設(shè)計 篇2
重點難點教學:
1、正確理解映射的概念;
2、函數(shù)相等的兩個條件;
3、求函數(shù)的定義域和值域。
教學過程:
1、使學生熟練掌握函數(shù)的概念和映射的定義;
2、使學生能夠根據(jù)已知條件求出函數(shù)的定義域和值域; 3、使學生掌握函數(shù)的三種表示方法。
教學內(nèi)容:
1、函數(shù)的定義
設(shè)A、B是兩個非空的數(shù)集,如果按照某種確定的對應關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)fx和它對應,那么稱:fAB?為從集合A到集合B的一個函數(shù)(function),記作:,yf A其中,x叫自變量,x的取值范圍A叫作定義域(domain),與x的值對應的y值叫函數(shù)值,函數(shù)值的集合{|}f A?叫值域(range)。顯然,值域是集合B的子集。
注意:
① “y=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;
②函數(shù)符號“y=f(x)”中的f(x)表示與x對應的函數(shù)值,一個數(shù),而不是f乘x、
2、構(gòu)成函數(shù)的三要素定義域、對應關(guān)系和值域。
3、映射的定義
設(shè)A、B是兩個非空的集合,如果按某一個確定的對應關(guān)系f,使對于集合A中的'任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:A→B為從集合A到集合B的一個映射。
4、區(qū)間及寫法:
設(shè)a、b是兩個實數(shù),且a
(1)滿足不等式axb??的實數(shù)x的集合叫做閉區(qū)間,表示為[a,b];
(2)滿足不等式axb??的實數(shù)x的集合叫做開區(qū)間,表示為(a,b);
5、函數(shù)的三種表示方法
①解析法
②列表法
③圖像法
高中數(shù)學單元教學設(shè)計 篇3
一、概述
教材內(nèi)容:等比數(shù)列的概念和通項公式的推導及簡單應用 教材難點:靈活應用等比數(shù)列及通項公式解決一般問題 教材重點:等比數(shù)列的概念和通項公式
二、教學目標分析
1、知識目標
1)
2) 掌握等比數(shù)列的定義 理解等比數(shù)列的通項公式及其推導
2、能力目標
1)學會通過實例歸納概念
2)通過學習等比數(shù)列的通項公式及其推導學會歸納假設(shè)
3)提高數(shù)學建模的能力
3、情感目標:
1)充分感受數(shù)列是反映現(xiàn)實生活的模型
2)體會數(shù)學是來源于現(xiàn)實生活并應用于現(xiàn)實生活
3)數(shù)學是豐富多彩的而不是枯燥無味的
三、教學對象及學習需要分析
1、 教學對象分析:
1)高中生已經(jīng)有一定的學習能力,對各方面的知識有一定的基礎(chǔ),理解能力較強。并掌握了函數(shù)及個別特殊函數(shù)的性質(zhì)及圖像,如指數(shù)函數(shù)。之前也剛學習了等差數(shù)列,在學習這一章節(jié)時可聯(lián)系以前所學的進行引導教學。
2)對歸納假設(shè)較弱,應加強這方面教學
2、學習需要分析:
四。 教學策略選擇與設(shè)計
1.課前復習
1)復習等差數(shù)列的概念及通向公式
2)復習指數(shù)函數(shù)及其圖像和性質(zhì)
2.情景導入
高中數(shù)學教學設(shè)計 篇4
一、教學目標
1.知識與技能
(1)掌握斜二測畫法畫水平設(shè)置的平面圖形的直觀圖。
(2)采用對比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點。
2.過程與方法
學生通過觀察和類比,利用斜二測畫法畫出空間幾何體的直觀圖。
3.情感態(tài)度與價值觀
(1)提高空間想象力與直觀感受。
(2)體會對比在學習中的作用。
(3)感受幾何作圖在生產(chǎn)活動中的應用。
二、教學重點、難點
重點、難點:用斜二測畫法畫空間幾何值的直觀圖。
三、學法與教學用具
1.學法:學生通過作圖感受圖形直觀感,并自然采用斜二測畫法畫空間幾何體的過程。
2.教學用具:三角板、圓規(guī)
四、教學思路
(一)創(chuàng)設(shè)情景,揭示課題
1.我們都學過畫畫,這節(jié)課我們畫一物體:圓柱
把實物圓柱放在講臺上讓學生畫。
2.學生畫完后展示自己的結(jié)果并與同學交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學習的內(nèi)容。
(二)研探新知
1.例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學生閱讀理解,并思考斜二測畫法的關(guān)鍵步驟,學生發(fā)表自己的見解,教師及時給予點評。
畫水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點的位置,因為多邊形頂點的位置一旦確定,依次連結(jié)這些頂點就可畫出多邊形來,因此平面多邊形水平放置時,直觀圖的畫法可以歸結(jié)為確定點的位置的畫法。強調(diào)斜二測畫法的步驟。
練習反饋
根據(jù)斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學生獨立完成后,教師檢查。
2.例2,用斜二測畫法畫水平放置的圓的直觀圖
教師引導學生與例1進行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點,由于不能像多邊那樣直接以頂點為代表點,因此需要自己構(gòu)造出一些點。
教師組織學生思考、討論和交流,如何構(gòu)造出需要的一些點,與學生共同完成例2并詳細板書畫法。
3.探求空間幾何體的直觀圖的畫法
(1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體ABCD-A’B’C’D’的直觀圖。
教師引導學生完成,要注意對每一步驟提出嚴格要求,讓學生按部就班地畫好每一步,不能敷衍了事。
(2)投影出示幾何體的三視圖、課本P15圖1.2-9,請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學生思考,討論和交流完成,教師巡視幫不懂的同學解疑,引導學生正確把握圖形尺寸大小之間的關(guān)系。
4.平行投影與中心投影
投影出示課本P17圖1.2-12,讓學生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點。
5.鞏固練習,課本P16練習1(1),2,3,4
三、歸納整理
學生回顧斜二測畫法的關(guān)鍵與步驟
四、作業(yè)
1.書畫作業(yè),課本P17練習第5題
2.課外思考課本P16,探究(1)(2)
高中數(shù)學教學設(shè)計 篇5
一、課程說明
(一)教材分析:
此次一對一家教所使用教材為北師大版高中數(shù)學必修5。輔導內(nèi)容為第一章第二節(jié)等差數(shù)列。前一節(jié)的內(nèi)容為數(shù)列,學生已初步了解到數(shù)列的概念,知道什么是首項,什么是通項等等。以及了解到什么是遞增數(shù)列,什么是遞減數(shù)列。通過第一節(jié)的學習的鋪墊,可以讓學生更自主的探究,學習等差數(shù)列。而我也是在這些基礎(chǔ)上為她講解第二節(jié)等差數(shù)列。
(二) 學生分析:
此次所帶學生是一名高二的學生。聰明但是不踏實,做題浮躁?;A(chǔ)知識掌握不夠牢靠,知識的運用能力較差,分析能力較弱,解題思路不清。每次她遇到會的題,就快快的草率做完,總會有因馬虎而犯的錯誤。遇到稍不會的,總是很浮躁,不能冷靜下來慢慢思考。就由略不會變成不會。但她也是個虛心聽教的孩子,給她講課,她也會很認真地聽講。
(三) 教學目標:
1、通過教與學的。配合,讓她能夠懂得什么是等差數(shù)列,以及等差數(shù)列的通項公式。
2、通過對公式的推導,讓她加深對內(nèi)容的理解,以及學會自己對公式的推導。并且能夠靈活運用。
3、在教學中讓她通過對公式的推導來明白推理的藝術(shù),并且培養(yǎng)她學習,做題條理清晰,思路縝密的好習慣。
4、讓她在學習,做題中一步步抽絲剝繭,尋找解決問題的方法,培養(yǎng)她敢于面對數(shù)學學習中的困難,并培養(yǎng)她對克服困難和運用知識。耐心地解決問題。
5、讓她在學習中發(fā)現(xiàn)數(shù)學的獨特的美,能夠愛上數(shù)學這門課。并且認真對待,自主學習。
(四)教學重點
1讓學生正確掌握等差數(shù)列及其通項公式,以及其性質(zhì)。并能獨立的推導。
2、能夠靈活運用公式并且能把相應公式與題相結(jié)合。
(五) 教學難點:
1、讓學生掌握公式的推導及其意義。
2如何把所學知識運用到相應的題中。
二、課前準備
(一) 教學器材
對于一對一教教采用傳統(tǒng)講課。一張掛歷。
(二)教學方法
通過對生活中的有規(guī)律數(shù)據(jù)的觀察來提出問題,讓學生結(jié)合前一節(jié)所學,思考有什么規(guī)律。從生活中著手有利于激發(fā)學生的興趣愛好,并能更積極地學習。讓學生先獨立的思考,不僅能讓她對所學知識映像更為深刻,并且培養(yǎng)她的縝密思維。讓她回答后,我再幫助她糾正,并且讓她提出心中所慮。經(jīng)過我給她講完課后,讓她回答自己先前的疑慮。并且讓她自己總結(jié),得出結(jié)論。最后讓她勤加練習。以一種“提出問題—探究問題—學習知識—解答問題—得出結(jié)論—強加訓練”的模式方法展開教學。
(三) 課時安排
課時大致分為五部分:
1、聯(lián)系實際提出相關(guān)問題,進行思考。
2以我教她學的模式講授相關(guān)章節(jié)知識。
3、讓學生練習相關(guān)習題,從所學知識中找其相應解題方案。
4學生對知識總結(jié)概括,我再對其進行補充說明。 5布置作業(yè),讓她課后多做練習。
三、課程設(shè)計
(一)提出問題
【引入】
根據(jù)我們的掛歷上,一個月的日期數(shù)。通過觀察每一行日期和每一列日期它們有什么規(guī)律?
思考 1 2 3 13579......246810......66666......
這些每一行有什么規(guī)律?
(二) 分析問題并講解
1、通過觀察每一個數(shù)與前一個數(shù)相差為同一個常數(shù)。再結(jié)合前一節(jié)所學數(shù)列的定義總結(jié)出“每一項與前一項的差為同一個常數(shù),我們稱這樣的數(shù)列為等差數(shù)列?!辈⑶业贸觥斑@個常數(shù)為等差數(shù)列的公差?!?/p>
2、設(shè)首項為 a1 ,公差為d。由思考題 1 2 3可觀察出什么?由學生通過她的發(fā)現(xiàn)來推導總結(jié)出
ana1n1dnda1d
3、通過分析通項公式的特點,做下題(學生自己分析,思考來做。) 例:已知在等差數(shù)列{an}中,a520a20xx,試求出數(shù)列的通項公式?
通過學生做題再分析總結(jié),用詳細的語言講解總結(jié)等差數(shù)列的性質(zhì)
4、由以上公式,性質(zhì),讓學生總結(jié)。
講解等差數(shù)列的定義。并且掌握數(shù)列的遞增,遞減與公差d的關(guān)系。
5總結(jié),串講當日所學
給出題目:12349899100 讓她求其和Sn,并思考如何快速計算?
(三) 布置作業(yè)
1、總結(jié)當日所學。 2做練習冊上章節(jié)習題。
3、根據(jù)當日所學以及課上所講求 的思考題,找出快速運算方法,并引導預習等差數(shù)列前n項和。
四、設(shè)計理念
以一種最簡便,易懂的方式讓學生來學習,一切以讓學生正確掌握知識,并能正確運用為理念。并能充分調(diào)動學生和家教老師的積極性為理念來設(shè)計。
五、教學設(shè)計反思
本節(jié)課教程內(nèi)容較難,是下一節(jié)等差數(shù)列前n項和的鋪墊。此節(jié)課學習通過聯(lián)系實際,把數(shù)學融入到生活中,從生活中探究學習數(shù)學。并提出問題,分析問題。把主動權(quán)交給學生,由她先獨立思考總結(jié),再由我給她正確講解總結(jié),然后再讓她做相應練習題,課后再認真總結(jié)。這樣可以加強她學習的主動性,更有利于她對知識的消化,吸收。這種方法同時可以培養(yǎng)學生的思維能力,讓她從自主學習中探索適合自己的學習方法,培養(yǎng)她獨立思考的能力。讓她更深刻的了解知識內(nèi)涵,鞏固所學。使她能靈活運用所學。
高中數(shù)學教學設(shè)計 篇6
教學準備
教學目標
1、掌握平面向量的數(shù)量積及其幾何意義;
2、掌握平面向量數(shù)量積的重要性質(zhì)及運算律;
3、了解用平面向量的數(shù)量積可以處理垂直的問題;
4、掌握向量垂直的條件。
教學重難點
教學重點:平面向量的數(shù)量積定義
教學難點:平面向量數(shù)量積的定義及運算律的理解和平面向量數(shù)量積的應用
教學過程
1、平面向量數(shù)量積(內(nèi)積)的定義:已知兩個非零向量a與b,它們的夾角是θ,
則數(shù)量|a||b|cosq叫a與b的數(shù)量積,記作a×b,即有a×b = |a||b|cosq,(0≤θ≤π)。
并規(guī)定0向量與任何向量的數(shù)量積為0。
×探究:1、向量數(shù)量積是一個向量還是一個數(shù)量?它的符號什么時候為正?什么時候為負?
2、兩個向量的`數(shù)量積與實數(shù)乘向量的積有什么區(qū)別?
(1)兩個向量的數(shù)量積是一個實數(shù),不是向量,符號由cosq的符號所決定。
(2)兩個向量的數(shù)量積稱為內(nèi)積,寫成a×b;今后要學到兩個向量的外積a×b,而a×b是兩個向量的數(shù)量的積,書寫時要嚴格區(qū)分。符號“· ”在向量運算中不是乘號,既不能省略,也不能用“×”代替。
(3)在實數(shù)中,若a?0,且a×b=0,則b=0;但是在數(shù)量積中,若a?0,且a×b=0,不能推出b=0。因為其中cosq有可能為0。
高中數(shù)學優(yōu)秀教學設(shè)計 篇7
一、探究式教學模式概述
1、探究式教學模式的含義。探究式教學就是學生在教師引導下,像科學家發(fā)現(xiàn)真理那樣以類似科學探究的方式來展開學習活動,通過自己大腦的獨立思考和探究,去弄清事物發(fā)展變化的起因和內(nèi)在聯(lián)系,從中探索出知識規(guī)律的教學模式。它的基本特征是教師不把跟教學內(nèi)容有關(guān)的內(nèi)容和認知策略直接告訴學生,而是創(chuàng)造一種適宜的認知和合作環(huán)境,讓學生通過探究形成認知策略,從而對教學目標進行一種全方位的學習,實現(xiàn)學生從被動學習到主動學習,培養(yǎng)學生的科學探究能力、創(chuàng)新意識和科學精神??梢?,探究式教學主張把學習知識的過程和探究知識的過程統(tǒng)一起來,充分發(fā)揮學生學習的自主性和參與性。
2、堂探究式教學的實質(zhì)。課堂探究式教學的實質(zhì)是使學生通過類似科學家科學探究的過程來理解科學探究概念和科學規(guī)律的本質(zhì),并培養(yǎng)學生的科學探究能力。具體地說,它包括兩個相互聯(lián)系的方面:一是有一個以“學”為中心的探究性學習環(huán)境。在這個環(huán)境中有豐富的教學資源,而且這些資源是圍繞某個知識主題來展開的。這個學習環(huán)境具有民主和諧的課堂氣氛,它使學生很少感到有壓力,能自主尋找所需要的信息,提出自己的設(shè)想,并以自己的方式檢驗其設(shè)想。二是教師可以給學生提供必要的幫助和指導,使學生在研究中能明確方向。這說明探究式教學的本質(zhì)特征是不直接把與教學目標有關(guān)的概念和認知策略告訴學生,取而代之的是教師創(chuàng)造出一種智力交流和社會交往的環(huán)境,讓學生通過探究自己發(fā)現(xiàn)規(guī)律。
3、探究式教學模式的特征。
(1)問題性。問題性是探究式教學模式的關(guān)鍵。能否提出對學生具有挑戰(zhàn)性和吸引力的問題,使學生產(chǎn)生問題意識,是探究教學成功與否的關(guān)鍵所在。恰當?shù)膯栴}會激起學生強烈的學習愿望,并引發(fā)學生的求異思維和創(chuàng)造思維。現(xiàn)代教育心理學研究提出:“學生的學習過程和科學家的探索過程在本質(zhì)上是一樣的,都是一個發(fā)現(xiàn)問題、分析問題、解決問題的過程?!彼耘囵B(yǎng)學生的問題意識是探究式教學的重要使命。
(2)過程性。過程性是探究式教學模式的重點。愛因斯坦說:“結(jié)論總以完成的形式出現(xiàn),讀者體會不到探索和發(fā)現(xiàn)的喜悅,感覺不到思想形成的生動過程,也就很難達到清楚、全面理解的境界?!碧骄渴浇虒W模式正是考慮到這些人的認知特點來組織教學的,它強調(diào)學生探索知識的經(jīng)歷和獲得新知識的親身感悟。
(3)開放性。開放性是探究式教學模式的難點。探究式教學模式總是綜合合作學習、發(fā)現(xiàn)學習、自主學習等學習方式的長處,培養(yǎng)學生良好的學習態(tài)度和學習方法,提倡和發(fā)展多樣化的學習方式。探究式教學模式要面對大量開放性的問題,教學資源和探究的結(jié)論面對生活、生產(chǎn)和科研是開放的,這一切都為教師的教與學生的學帶來了機遇與挑戰(zhàn)。
二、教學設(shè)計案例
1、教學內(nèi)容:數(shù)字排列中3、9的探究式教學。
2、教學目標。
(1)知識與技能:掌握數(shù)字排列的知識,能靈活運用所學知識。
(2)過程與方法:在探究過程中掌握分析問題的方法和邏輯推理的方法。
(3)情感態(tài)度與價值觀:培養(yǎng)學生觀察、分析、推理、歸納等綜合能力,讓學生體會到認識客觀規(guī)律的一般過程。
3、教學方法:談話探究法,討論探究法。
4、教學過程。
(1)創(chuàng)設(shè)情境。教師:在高中數(shù)學第十章的教學中,有關(guān)數(shù)字排列的問題占有重要位置。我們曾經(jīng)做過的有關(guān)數(shù)字排列的題目,如“由若干個數(shù)字排列成偶數(shù)”、“能被5整除的數(shù)”等問題,只要使排列成的數(shù)的個位數(shù)字為偶數(shù),則這個數(shù)就是偶數(shù),當排列成的數(shù)的個位數(shù)字為0或5時,則這個數(shù)就能被5整除。那么能被3整除的數(shù),能被9整除的數(shù)有何特點?
(2)提出問題。
問題1:在用1、2、3、4、5、6六個數(shù)字組成沒有重復數(shù)字的四位數(shù)中,是9的倍數(shù)的共有()
A、36個B、18個C、12個D、24個
問題2:在用0、1、2、3、4、5這六個數(shù)字組成沒有重復數(shù)字的自然數(shù)中,有多少個能被6整除的五位數(shù)?
(3)探究思考。點評:乍一看問題1,對于由若干個數(shù)字排列成9的倍數(shù)的問題,如:81、72、63、54、45、36、27、18、9這些能夠被9整除的數(shù)的個位數(shù)字依次是1、2、3、4、5、6、7、8、9。因此,要考察能被9整除的數(shù),不能只考慮個位數(shù)字了。于是,需另辟蹊徑,探究能被9整除的數(shù)的特點,尋求解決問題的途徑。
教師:同學們觀察81、72、63、54、45、36、27、18、9這些數(shù),甚至再寫出幾個能被9整除的數(shù),如981、1872等,看看它們有何特點?
學生:它們都滿足“各位數(shù)字之和能被9整除”。
教師:此結(jié)論的正確性如何?
學生:老師,我們證明此結(jié)論的正確性,好嗎?
教師:好。
學生:證明:不妨以n是一個四位數(shù)為例證之。
設(shè)n=1000a+100b+10c+d(a,b,c,d∈N)依條件,有a+b+c+d=9m(m∈N)
則n=1000a+100b+10c+d
=(999a+a)+(99b+b)+(9c+c)+d
=(999a+99b+9c)+(a+b+c+d)
=9(111a+11b+c)+9m
=9(111a+11b+c+m)
∵ a,b,c,m∈N
∴ 111a+11b+c+m∈N
所以n能被9整除
同理可證定理的后半部分。
教師:看來上述結(jié)論正確。所以得到如下定理。
定理:如果一個自然數(shù)n各個數(shù)位上的數(shù)字之和能被9整除,那么這個數(shù)n就能夠被9整除;如果一個自然數(shù)n各個數(shù)位上的數(shù)字之和能被3整除,那么這個數(shù)n就能夠被3整除。
教師:利用該定理可解決“能被3、9整除”的數(shù)字排列問題,請同學們先解答問題1。
學生:嘗試1+4+5+6=16,1+3+4+5=13,2+3+4+5=14,2+4+5+6=17,1+2+3+4=10,1+2+5+6=14。
教師:啟發(fā)學生觀察這些數(shù)字有何特點?提問學生。
學生:可以看出只要從1、2、3、4、5、6這六個數(shù)中,選取的四個數(shù)字中含1(或2),或者同時含1、2,選取的四個數(shù)字之和都不是9的倍數(shù)。
教師:請學生們繼續(xù)嘗試選取其他數(shù)字試一試。
學生:3+4+5+6=18是9的倍數(shù)。
教師:因此用1、2、3、4、5、6六個數(shù)字組成沒有重復數(shù)字的四位數(shù)中,是9的倍數(shù)的數(shù),就是由3、4、5、6進行全排列所得,共有=24(個)。
故應選D。
(4)學以致用。
問題2:在用0、1、2、3、4、5這六個數(shù)字組成沒有重復數(shù)字的自然數(shù)中,有多少個能被6整除的五位數(shù)?
教師:從上面的定理知:如果一個自然數(shù)n各個數(shù)位上的數(shù)字之和能被3整除,那么這個數(shù)n就能夠被3整除。同學們對問題2有何想法?
學生討論:
學生1:被6整除的。五位數(shù)必須既能被2整除,又能被3整除,故能被6整除的五位數(shù),即為各位數(shù)字之和能被3整除的五位偶數(shù)。
學生2:由于1+2+3+4+5=15,能被3整除,所以選取的5個數(shù)字可分兩類:一類是5個數(shù)字中無0,另一類是5個數(shù)字中有0(但不含3)。
學生3:第一類:5個數(shù)字中無0的五位偶數(shù)有。
第二類:5個數(shù)字中含有0不含3的五位偶數(shù)有兩類,第一,0在個位有個;第二,個位是2或4有,所以共有+ 。
學生4:由分類計數(shù)原理得:能被6整除的無重復數(shù)字的五位數(shù)共有+ + =108(個)。
(5)概括強化。
重點:了解數(shù)字排列問題的特點,理解掌握數(shù)字排列中3、9問題的規(guī)律。
難點:數(shù)字排列知識的靈活應用。
關(guān)鍵:證明的思路以及定理的得出。
新學知識與已知知識之間的區(qū)別和聯(lián)系:已知知識“由若干個數(shù)字排列成偶數(shù)”、“能被5整除的數(shù)”等問題,只要使排列成的數(shù)的個位數(shù)字為偶數(shù),則這個數(shù)就是偶數(shù),當排列成的數(shù)的個位數(shù)字為0或5時,則這個數(shù)就能被5整除”。新學知識“如果一個自然數(shù)n各個數(shù)位上的數(shù)字之和能被9整除,那么這個數(shù)n就能夠被9整除;如果一個自然數(shù)n各個數(shù)位上的數(shù)字之和能被3整除,那么這個數(shù)n就能夠被3整除。都是數(shù)字排列知識,要學會靈活應用。
(6)作業(yè)。請同學們自擬練習題,以求達到熟練解決此類問題的目的。
總之,探究式教學模式是針對傳統(tǒng)教學的種種弊端提出來的,新課程改革強調(diào)改變課程過于注重知識的傳授和過于強調(diào)接受式學習的狀況,倡導學生主動參與樂于探究、勤于動手,讓學生經(jīng)歷科學探究過程,學習科學研究方法,并強調(diào)獲得知識、技能的過程成為學會學習和形成價值觀的過程,以培養(yǎng)學生的探究精神、創(chuàng)新意識和實踐能力。
數(shù)學高中教學設(shè)計 篇8
教學目標
(1)使學生正確理解組合的意義,正確區(qū)分排列、組合問題;
(2)使學生掌握組合數(shù)的計算公式;
(3)通過學習組合知識,讓學生掌握類比的學習方法,并提高學生分析問題和解決問題的能力;
教學重點難點
重點是組合的定義、組合數(shù)及組合數(shù)的公式;
難點是解組合的應用題。
教學過程設(shè)計
(一)導入新課
(教師活動)提出下列思考問題,打出字幕。
〔字幕〕一條鐵路線上有6個火車站
(1)需準備多少種不同的普通客車票?
(2)有多少種不同票價的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?
(學生活動)討論并回答
答案提示:
(1)排列;
(2)組合
〔評述〕問題
(1)是從6個火車站中任選兩個,并按一定的順序排列,要求出排法的種數(shù),屬于排列問題;
(2)是從6個火車站中任選兩個并成一組,兩站無順序關(guān)系,要求出不同的組數(shù),屬于組合問題,這節(jié)課著重研究組合問題
設(shè)計意圖:組合與排列所研究的問題幾乎是平行的。上面設(shè)計的問題目的是從排列知識中發(fā)現(xiàn)并提出新的問題
(二)新課講授
〔提出問題創(chuàng)設(shè)情境〕
(教師活動)指導學生帶著問題閱讀課文
〔字幕〕
1.排列的定義是什么?
2.舉例說明一個組合是什么?
3.一個組合與一個排列有何區(qū)別?
(學生活動)閱讀回答。
(教師活動)對照課文,逐一評析。
設(shè)計意圖:激活學生的思維,使其將所學的知識遷移過渡,并盡快適應新的環(huán)境
【歸納概括建立新知】
(教師活動)承接上述問題的回答,展示下面知識。
〔字幕〕模型:從個不同元素中取出個元素并成一組,叫做從個不同元素中取出個元素的一個組合。如前面思考題:6個火車站中甲站→乙站和乙站→甲站是票價相同的車票,是從6個元素中取出2個元素的一個組合
〔評述〕區(qū)分一個排列與一個組合的關(guān)鍵是:該問題是否與順序有關(guān),當取出元素后,若改變一下順序,就得到一種新的取法,則是排列問題;若改變順序,仍得原來的取法,就是組合問題
(學生活動)傾聽、思索、記錄
(教師活動)提出思考問題
〔投影〕與的關(guān)系如何?
(師生活動)共同探討。求從個不同元素中取出個元素的排列數(shù),可分為以下兩步:
第1步,先求出從這個不同元素中取出個元素的組合數(shù)為;
第2步,求每一個組合中個元素的全排列數(shù)為
根據(jù)分步計數(shù)原理,得到
〔字幕〕公式1:
公式2:
(學生活動)驗算,即一條鐵路上6個火車站有15種不同的票價的普通客車票
設(shè)計意圖:本著以認識概念為起點,以問題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識的形成過程,使學生思維層層被激活、逐漸深入到問題當中去
(三)小結(jié)
(師生活動)共同小結(jié)
本節(jié)主要內(nèi)容有
1.組合概念
2.組合數(shù)計算的兩個公式
(四)布置作業(yè)
1.課本作業(yè):習題103第1(1)、(4),3題
2.思考題:某學習小組有8個同學,從男生中選2人,女生中選1人參加數(shù)學、物理、化學三種學科競賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學各有多少人?
3.研究性題:
在的邊上除頂點外有5個點,在邊上有4個點,由這些點(包括)能組成多少個四邊形?能組成多少個三角形?
(五)課后點評
1.在學習了排列知識的基礎(chǔ)上,本節(jié)課引進了組合概念,并推導出組合數(shù)公式,同時調(diào)控進行訓練,從而培養(yǎng)學生分析問題、解決問題的能力
2.解;設(shè)有男同學人,則有女同學人,依題意有,由此解得或或2.即男同學有5人或6人,女同學相應為3人或2人
3.能組成(注意不能用點為頂點)個四邊形,個三角形。
探究活動
同室四人各寫一張賀年卡,先集中起來,然后每人從中拿一張別人送出的賀年卡,那么四張不同的分配萬式可有多少種?
解設(shè)四人分別為甲、乙、丙、丁,可從多種角度來解
高中數(shù)學教學設(shè)計題模板 篇9
高中數(shù)學教學設(shè)計——函數(shù)的奇偶性
函數(shù)的奇偶性是函數(shù)的重要性質(zhì),是對函數(shù)概念的深化。它把自變量取相反數(shù)時函數(shù)值間的關(guān)系定量地聯(lián)系在一起,反映在圖像上為:偶函數(shù)的圖像關(guān)于y軸對稱,奇函數(shù)的圖像關(guān)于坐標原點成中心對稱。這樣,就從數(shù)、形兩個角度對函數(shù)的奇偶性進行了定量和定性的分析。教材首先通過對具體函數(shù)的圖像及函數(shù)值對應表歸納和抽象,概括出了函數(shù)奇偶性的準確定義。然后,為深化對概念的理解,舉出了奇函數(shù)、偶函數(shù)、既是奇函數(shù)又是偶函數(shù)的函數(shù)和非奇非偶函數(shù)的實例。最后,為加強前后聯(lián)系,從各個角度研究函數(shù)的性質(zhì),講清了奇偶性和單調(diào)性的聯(lián)系。這節(jié)課的重點是函數(shù)奇偶性的定義,難點是根據(jù)定義判斷函數(shù)的奇偶性。 教學目標
1、通過具體函數(shù),讓學生經(jīng)歷奇函數(shù)、偶函數(shù)定義的討論,體驗數(shù)學概念的建立過程,培養(yǎng)其抽象的概括能力。
2、理解、掌握函數(shù)奇偶性的定義,奇函數(shù)和偶函數(shù)圖像的特征,并能初步應用定義判斷一些簡單函數(shù)的奇偶性。
3、在經(jīng)歷概念形成的過程中,培養(yǎng)學生歸納、抽象概括能力,體驗數(shù)學既是抽象的又是具體的。 任務(wù)分析
這節(jié)內(nèi)容學生在初中雖沒學過,但已經(jīng)學習過具有奇偶性的具體的函數(shù):正比例函數(shù)y=kx,反比例函數(shù) ,(k≠0),二次函數(shù)y=ax,(a≠0),故可在此基礎(chǔ)上,引入奇、偶函數(shù)的概念,以便于學生理解。在引入概念時始終結(jié)合具體函數(shù)的圖像,以增加直觀性,這樣更符合學生的認知規(guī)律,同時為闡述奇、偶函數(shù)的幾何特征埋下了伏筆。對于概念可從代數(shù)特征與幾何特征兩個角度去分析,讓學生理解:奇函數(shù)、偶函數(shù)的定義域是關(guān)于原點對稱的非空數(shù)集;對于在有定義的奇函數(shù)y=f(x),一定有f(0)=0;既是奇函數(shù),又是偶函數(shù)的函數(shù)有f(x)=0,x∈R.在此基礎(chǔ)上,讓學生了解:奇函數(shù)、偶函數(shù)的矛盾概念———非奇非偶函數(shù)。關(guān)于單調(diào)性與奇偶性關(guān)系,引導學生拓展延伸,可以取得理想效果。 教學設(shè)計
一、問題情景
1、觀察如下兩圖,思考并討論以下問題:
(1)這兩個函數(shù)圖像有什么共同特征?
(2)相應的兩個函數(shù)值對應表是如何體現(xiàn)這些特征的? 可以看到兩個函數(shù)的圖像都關(guān)于y軸對稱。從函數(shù)值對應表可以看到,當自變量x取一對相反數(shù)時,相應的兩個函數(shù)值相同。
對于函數(shù)f(x)=x,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1)。事實上,對于R內(nèi)任意的一個x,都有f(-x)=(-x)2=x2=f(x)。此時,稱函數(shù)y=x2為偶函數(shù)。
2、觀察函數(shù)f(x)=x和f(x)= 的圖像,并完成下面的兩個函數(shù)值對應表,然后說出這兩個函數(shù)有什么共同特征。
22可以看到兩個函數(shù)的圖像都關(guān)于原點對稱。函數(shù)圖像的這個特征,反映在解析式上就是:當自變量x取一對相反數(shù)時,相應的函數(shù)值f(x)也是一對相反數(shù),即對任一x∈R都有f(-x)=-f(x)。此時,稱函數(shù)y=f(x)為奇函數(shù)。
二、建立模型
由上面的分析討論引導學生建立奇函數(shù)、偶函數(shù)的定義 1.奇、偶函數(shù)的定義
如果對于函數(shù)f(x)的定義域內(nèi)任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫作奇函數(shù)。如果對于函數(shù)f(x)的定義域內(nèi)任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)就叫作偶函數(shù)。
2、提出問題,組織學生討論
(1)如果定義在R上的函數(shù)f(x)滿足f(-2)=f(2),那么f(x)是偶函數(shù)嗎? (f(x)不一定是偶函數(shù))
(2)奇、偶函數(shù)的圖像有什么特征?
(奇、偶函數(shù)的圖像分別關(guān)于原點、y軸對稱) (3)奇、偶函數(shù)的定義域有什么特征? (奇、偶函數(shù)的定義域關(guān)于原點對稱)
三、解釋應用 [例 題]
1、判斷下列函數(shù)的奇偶性。
注:①規(guī)范解題格式;②對于(5)要注意定義域x∈(-1,1]。
2、已知:定義在R上的函數(shù)f(x)是奇函數(shù),當x>0時,f(x)=x(1+x),求f(x)的表達式。
解:(1)任取x<0,則-x>0,∴f(-x)=-x(1-x),
而f(x)是奇函數(shù),∴f(-x)=-f(x)?!鄁(x)=x(1-x)。
(2)當x=0時,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.
3、已知:函數(shù)f(x)是偶函數(shù),且在(-∞,0)上是減函數(shù),判斷f(x)在(0,+∞)上是增函數(shù),還是減函數(shù),并證明你的結(jié)論。
解:先結(jié)合圖像特征:偶函數(shù)的圖像關(guān)于y軸對稱,猜想f(x)在(0,+∞)上是增函數(shù),證明如下:
任取x1>x2>0,則-x1<-x2<0.
∵f(x)在(-∞,0)上是減函數(shù),∴f(-x1)>f(-x2)。 又f(x)是偶函數(shù),∴f(x1)>f(x2)。
∴f(x)在(0,+∞)上是增函數(shù)。
思考:奇函數(shù)或偶函數(shù)在關(guān)于原點對稱的兩個區(qū)間上的單調(diào)性有何關(guān)系?
[練 習]
1、已知:函數(shù)f(x)是奇函數(shù),在[a,b]上是增函數(shù)(b>a>0),問f(x)在[-b,-a]上的單調(diào)性如何。
2.f(x)=-x3|x|的大致圖像可能是(
)
3、函數(shù)f(x)=ax2+bx+c,(a,b,c∈R),當a,b,c滿足什么條件時,(1)函數(shù)f(x)是偶函數(shù)。(2)函數(shù)f(x)是奇函數(shù)。 4.設(shè)f(x),g(x)分別是R上的奇函數(shù)和偶函數(shù),并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式。
四、拓展延伸
1、有既是奇函數(shù),又是偶函數(shù)的函數(shù)嗎?若有,有多少個? 2.設(shè)f(x),g(x)分別是R上的奇函數(shù),偶函數(shù),試研究: (1)F(x)=f(x)·g(x)的奇偶性。 (2)G(x)=|f(x)|+g(x)的奇偶性。
3、已知a∈R,f(x)=a- ,試確定a的值,使f(x)是奇函數(shù)。
4、一個定義在R上的函數(shù),是否都可以表示為一個奇函數(shù)與一個偶函數(shù)的和的形式?
高中數(shù)學教學設(shè)計范例 篇10
一、目標
1、知識與技能
(1)理解流程圖的順序結(jié)構(gòu)和選擇結(jié)構(gòu)。
(2)能用字語言表示算法,并能將算法用順序結(jié)構(gòu)和選擇結(jié)構(gòu)表示簡單的流程圖
2、過程與方法
學生通過模仿、操作、探索、經(jīng)歷設(shè)計流程圖表達解決問題的過程,理解流程圖的結(jié)構(gòu)。
3、情感、態(tài)度與價值觀
學生通過動手作圖,用自然語言表示算法,用圖表示算法。進一步體會算法的基本思想——程序化思想,在歸納概括中培養(yǎng)學生的邏輯思維能力。
二、重點、難點
重點:算法的順序結(jié)構(gòu)與選擇結(jié)構(gòu)。
難點:用含有選擇結(jié)構(gòu)的流程圖表示算法。
三、學法與教學用具
學法:學生通過動手作圖,用自然語言表示算法,用圖表示算法,體會到用流程圖表示算法,簡潔、清晰、直觀、便于檢查,經(jīng)歷設(shè)計流程圖表達解決問題的過程。進而學習順序結(jié)構(gòu)和選擇結(jié)構(gòu)表示簡單的流程圖。
教學用具:尺規(guī)作圖工具,多媒體。
四、教學思路
(一)、問題引入 揭示題
例1 尺規(guī)作圖,確定線段的一個5等分點。
要求:同桌一人作圖,一人寫算法,并請學生說出答案。
提問:用字語言寫出算法有何感受?
引導學生體驗到:顯得冗長,不方便、不簡潔。
教師說明:為了使算法的表述簡潔、清晰、直觀、便于檢查,我們今天學習用一些通用圖型符號構(gòu)成一張圖即流程圖表示算法。
本節(jié)要學習的是順序結(jié)構(gòu)與選擇結(jié)構(gòu)。
右圖即是同流程圖表示的算法。
(二)、觀察類比 理解題
1、 投影介紹流程圖的符號、名稱及功能說明。
符號 符號名稱 功能說明
終端框 算法開始與結(jié)束
處理框 算法的各種處理操作
判斷框 算法的各種轉(zhuǎn)移
輸入輸出框 輸入輸出操作
指向線 指向另一操作
2、講授順序結(jié)構(gòu)及選擇結(jié)構(gòu)的概念及流程圖
(1)順序結(jié)構(gòu)
依照步驟依次執(zhí)行的一個算法
流程圖:
(2)選擇結(jié)構(gòu)
對條進行判斷決定后面的步驟的結(jié)構(gòu)
流程圖:
3、用自然語言表示算法與用流程圖表示算法的比較
(1)半徑為r的圓的面積公式 當r=10時寫出計算圓的面積的算法,并畫出流程圖。
解:
算法(自然語言)
①把10賦與r
②用公式 求s
③輸出s
流程圖
(2) 已知函數(shù) 對于每輸入一個X值都得到相應的函數(shù)值,寫出算法并畫流程圖。
算法:(語言表示)
① 輸入X值
②判斷X的范圍,若 ,用函數(shù)Y=x+1求函數(shù)值;否則用Y=2-x求函數(shù)值
③輸出Y的值
流程圖
小結(jié):含有數(shù)學中需要分類討論的或與分段函數(shù)有關(guān)的問題,均要用到選擇結(jié)構(gòu)。
學生觀察、類比、說出流程圖與自然語言對比有何特點?(直觀、清楚、便于檢查和交流)
(三)模仿操作 經(jīng)歷題
1、用流程圖表示確定線段A.B的一個16等分點
2、分析講解例2;
分析:
思考:有多少個選擇結(jié)構(gòu)?相應的流程圖應如何表示?
流程圖:
(四)歸納小結(jié) 鞏固題
1、順序結(jié)構(gòu)和選擇結(jié)構(gòu)的模式是怎樣的?
2、怎樣用流程圖表示算法。
(五)練習P99 2
(六)作業(yè)P99 1
高中數(shù)學單元教學設(shè)計 篇11
學習目標
明確排列與組合的聯(lián)系與區(qū)別,能判斷一個問題是排列問題還是組合問題;能運用所學的排列組合知識,正確地解決的實際問題。
學習過程
一、學前準備
復習:
1.(課本P28A13)填空:
(1)有三張參觀卷,要在5人中確定3人去參觀,不同方法的種數(shù)是 ;
(2)要從5件不同的禮物中選出3件分送3為同學,不同方法的種數(shù)是 ;
(3)5名工人要在3天中各自選擇1天休息,不同方法的種數(shù)是 ;
(4)集合A有個 元素,集合B有 個元素,從兩個集合中各取1個元素,不同方法的種數(shù)是 ;
二、新課導學
◆探究新知(復習教材P14~P25,找出疑惑之處)
問題1:判斷下列問題哪個是排列問題,哪個是組合問題:
(1)從4個風景點中選出2個安排游覽,有多少種不同的方法?
(2)從4個風景點中選出2個,并確定這2個風景點的游覽順序,有多少種不同的方法?
◆應用示例
例1.從10個不同的文藝節(jié)目中選6個編成一個節(jié)目單,如果某女演員的獨唱節(jié)目一定不能排在第二個節(jié)目的位置上,則共有多少種不同的排法?
例2.7位同學站成一排,分別求出符合下列要求的不同排法的種數(shù)。
(1) 甲站在中間;
(2)甲、乙必須相鄰;
(3)甲在乙的左邊(但不一定相鄰);
(4)甲、乙必須相鄰,且丙不能站在排頭和排尾;
(5)甲、乙、丙相鄰;
(6)甲、乙不相鄰;
(7)甲、乙、丙兩兩不相鄰。
◆反饋練習
1. (課本P40A4)某學生邀請10位同學中的6位參加一項活動,其中兩位同學要么都請,要么都不請,共有多少種邀請方法?
2.5男5女排成一排,按下列要求各有多少種排法:
(1)男女相間;
(2)女生按指定順序排列
3.馬路上有12盞燈,為了節(jié)約用電,可以熄滅其中3盞燈,但兩端的燈不能熄滅,也不能熄滅相鄰的兩盞燈,那么熄燈方法共有______種。
當堂檢測
1.某班新年聯(lián)歡會原定的5個節(jié)目已排成節(jié)目單,開演前又增加了兩個新節(jié)目。如果將這兩個節(jié)目插入原節(jié)目單中,那么不同插法的種數(shù)為( )
A.42 B.30 C.20 D.12
2.(課本P40A7)書架上有4本不同的數(shù)學書,5本不同的物理書,3本不同的化學書,全部排在同一層,如果不使同類的書分開,一共有多少種排法?
課后作業(yè)
1.(課本P41B2)用數(shù)字0,1,2,3,4,5組成沒有重復數(shù)字的數(shù),問:
(1)能夠組成多少個六位奇數(shù)?
(2)能夠組成多少個大于201345的正整數(shù)?
2.(課本P41B4)某種產(chǎn)品的加工需要經(jīng)過5道工序,問:
(1)如果其中某一工序不能放在最后,有多少種排列加工順序的方法?
(2)如果其中兩道工序既不能放在最前,也不能放在最后,有多少種排列加工順序的方法?
高中數(shù)學教案 篇12
教學目標
理解數(shù)列的概念,掌握數(shù)列的運用
教學重難點
理解數(shù)列的概念,掌握數(shù)列的。運用
教學過程
【知識點精講】
1、數(shù)列:按照一定次序排列的一列數(shù)(與順序有關(guān))
2、通項公式:數(shù)列的第n項an與n之間的函數(shù)關(guān)系用一個公式來表示an=f(n)。
(通項公式不)
3、數(shù)列的表示:
(1)列舉法:如1,3,5,7,9……;
(2)圖解法:由(n,an)點構(gòu)成;
(3)解析法:用通項公式表示,如an=2n+1
(4)遞推法:用前n項的值與它相鄰的項之間的關(guān)系表示各項,如a1=1,an=1+2an-1
4、數(shù)列分類:有窮數(shù)列,無窮數(shù)列;遞增數(shù)列,遞減數(shù)列,擺動數(shù)列,常數(shù)數(shù)列;有界數(shù)列,xx數(shù)列
5、任意數(shù)列{an}的前n項和的性質(zhì)
高中數(shù)學教學設(shè)計 篇13
教學目的:
掌握圓的標準方程,并能解決與之有關(guān)的問題
教學重點:
圓的標準方程及有關(guān)運用
教學難點:
標準方程的靈活運用
教學過程:
一、導入新課,探究標準方程
二、掌握知識,鞏固練習
練習:
1、說出下列圓的方程
⑴圓心(3,—2)半徑為5
⑵圓心(0,3)半徑為3
2、指出下列圓的圓心和半徑
⑴(x—2)2+(y+3)2=3
⑵x2+y2=2
⑶x2+y2—6x+4y+12=0
3、判斷3x—4y—10=0和x2+y2=4的位置關(guān)系
4、圓心為(1,3),并與3x—4y—7=0相切,求這個圓的方程
三、引伸提高,講解例題
例1、圓心在y=—2x上,過p(2,—1)且與x—y=1相切求圓的方程(突出待定系數(shù)的數(shù)學方法)
練習:1、某圓過(—2,1)、(2,3),圓心在x軸上,求其方程。
2、某圓過A(—10,0)、B(10,0)、C(0,4),求圓的方程。
例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。
例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓練思維)
四、小結(jié)練習P771,2,3,4
五、作業(yè)P811,2,3,4
高中數(shù)學教學設(shè)計 篇14
教學目標
(1)理解四種命題的概念;
(2)理解四種命題之間的相互關(guān)系,能由原命題寫出其他三種形式;
(3)理解一個命題的真假與其他三個命題真假間的關(guān)系;
(4)初步掌握反證法的概念及反證法證題的基本步驟;
(5)通過對四種命題之間關(guān)系的學習,培養(yǎng)學生邏輯推理能力;
(6)通過對四種命題的存在性和相對性的認識,進行辯證唯物主義觀點教育;
(7)培養(yǎng)學生用反證法簡單推理的技能,從而發(fā)展學生的思維能力。
教學重點和難點
重點:四種命題之間的關(guān)系;
難點:反證法的運用。
教學過程設(shè)計
一、導入新課
【練習】
1、把下列命題改寫成“若p則q”的形式:
(1)同位角相等,兩直線平行;
(2)正方形的四條邊相等。
2、什么叫互逆命題?上述命題的逆命題是什么?
將命題寫成“若p則q”的形式,關(guān)鍵是找到命題的條件p與q結(jié)論。
如果第一個命題的條件是第二個命題的結(jié)論,且第一個命題的結(jié)論是第二個命題的條件,那么這兩個命題叫做互道命題。
上述命題的道命題是“若一個四邊形的四條邊相等,則它是正方形”和“若兩條直線平行,則同位角相等”。
值得指出的是原命題和逆命題是相對的。我們也可以把逆命題當成原命題,去求它的逆命題。
3、原命題真,逆命題一定真嗎?
“同位角相等,兩直線平行”這個原命題真,逆命題也真。但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真。
學生活動:
口答:
(1)若同位角相等,則兩直線平行;
(2)若一個四邊形是正方形,則它的四條邊相等。
設(shè)計意圖:
通過復習舊知識,打下學習否命題、逆否命題的基礎(chǔ)。
二、新課
【設(shè)問】命題“同位角相等,兩條直線平行”除了能構(gòu)成它的逆命題外,是否還可以構(gòu)成其它形式的命題?
【講述】可以將原命題的條件和結(jié)論分別否定,構(gòu)成“同位角不相等,則兩直線不平行”,這個命題叫原命題的否命題。
【提問】你能由原命題“正方形的四條邊相等”構(gòu)成它的否命題嗎?
學生活動:
口答:若一個四邊形不是正方形,則它的四條邊不相等。
教師活動:
【講述】一個命題的條件和結(jié)論分別是另一個命題的條件的否定和結(jié)論的否定,這樣的兩個命題叫做互否命題。把其中一個命題叫做原命題,另一個命題叫做原命題的否命題。
若用p和q分別表示原命題的條件和結(jié)論,用┐p和┐q分別表示p和q的否定。
【板書】原命題:若p則q;
否命題:若┐p則q┐。
【提問】原命題真,否命題一定真嗎?舉例說明?
學生活動:
講論后回答:
原命題“同位角相等,兩直線平行”真,它的否命題“同位角不相等,兩直線不平行”不真。
原命題“正方形的四條邊相等”真,它的否命題“若一個四邊形不是正方形,則它的四條邊不相等”不真。
由此可以得原命題真,它的否命題不一定真。
設(shè)計意圖:
通過設(shè)問和討論,讓學生在自己舉例中研究如何由原命題構(gòu)成否命題及判斷它們的真假,調(diào)動學生學習的積極性。
教師活動:
【提問】命題“同位角相等,兩條直線平行”除了能構(gòu)成它的逆命題和否命題外,還可以不可以構(gòu)成別的命題?
學生活動:
討論后回答
【總結(jié)】可以將這個命題的條件和結(jié)論互換后再分別將新的條件和結(jié)論分別否定構(gòu)成命題“兩條直線不平行,則同位角不相等”,這個命題叫原命題的逆否命題。
教師活動:
【提問】原命題“正方形的四條邊相等”的逆否命題是什么?
學生活動:
口答:若一個四邊形的四條邊不相等,則不是正方形。
教師活動:
【講述】一個命題的條件和結(jié)論分別是另一個命題的結(jié)論的否定和條件的否定,這樣的兩個命題叫做互為逆否命題。把其中一個命題叫做原命題,另一個命題就叫做原命題的逆否命題。
原命題是“若p則q”,則逆否命題為“若┐q則┐p。
【提問】“兩條直線不平行,則同位角不相等”是否真?“若一個四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?
學生活動:
討論后回答
這兩個逆否命題都真。
原命題真,逆否命題也真。
教師活動:
【提問】原命題的真假與其他三種命題的真
假有什么關(guān)系?舉例加以說明?
【總結(jié)】
1、原命題為真,它的逆命題不一定為真。
2、原命題為真,它的否命題不一定為真。
3、原命題為真,它的逆否命題一定為真。
設(shè)計意圖:
通過設(shè)問和討論,讓學生在自己舉例中研究如何由原命題構(gòu)成逆否命題及判斷它們的真假,調(diào)動學生學的積極性。
教師活動總結(jié)。