《正弦定理說課稿優(yōu)秀5篇》
作為一名教學(xué)工作者,通常需要用到說課稿來輔助教學(xué),借助說課稿可以更好地組織教學(xué)活動。那么寫說課稿需要注意哪些問題呢?本文是小編燕子幫大伙兒整編的5篇正弦定理說課稿,歡迎參考閱讀,希望可以幫助到有需要的朋友。
《正弦定理》說課稿 篇1
大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學(xué)設(shè)計。
一、教材分析
本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的'聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時??家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。
根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學(xué)目標(biāo):
認(rèn)知目標(biāo):通過創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,掌握正弦定理的內(nèi)容及其證明方法,使學(xué)生會運用正弦定理解決兩類基本的解三角形問題。
能力目標(biāo):引導(dǎo)學(xué)生通過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識和觀察與邏輯思維能力,能體會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。
情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,通過學(xué)生之間、師生之間的交流、合作和評價,調(diào)動學(xué)生的主動性和積極性,激發(fā)學(xué)生學(xué)習(xí)的興趣。
教學(xué)重點:正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。 教學(xué)難點:已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。
二、教法
根據(jù)教材的內(nèi)容和編排的特?
三、學(xué)法
指導(dǎo)學(xué)生掌握“觀察――猜想――證明――應(yīng)用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實事求是的科學(xué)態(tài)度,增強(qiáng)了鍥而不舍的求學(xué)精神。
四、教學(xué)過程
(一)創(chuàng)設(shè)情境(3分鐘)
“興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。
(二)猜想―推理―證明(15分鐘)
激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。 提問:那結(jié)論對任意三角形都適用嗎?(讓學(xué)生分小組討論,并得出猜想)
在三角形中,角與所對的邊滿足關(guān)系
注意:1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。
2.鼓勵學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。
3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
(三)總結(jié)--應(yīng)用(3分鐘)
1.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。
2.運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發(fā)學(xué)生知識后用于實際的價值觀。
(四)講解例題(8分鐘)
1.例1. 在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。
例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。
2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。
例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中
一邊的對角時解三角形的各種情形。完了把時間交給學(xué)生。
(五)課堂練習(xí)(8分鐘)
1.在△ABC中,已知下列條件,解三角形。 (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm
2. 在△ABC中,已知下列條件,解三角形。 (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115°
學(xué)生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。
(六)小結(jié)反思(3分鐘)
1.它表述了三角形的邊與對角的正弦值的關(guān)系。
2.定理證明分別從直角、銳角、鈍角出發(fā),運用分類討論的思想。
3.會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。
《正弦定理》的說課稿 篇2
一、教學(xué)目標(biāo):
掌握正弦定理的基本概念及其應(yīng)用;
理解正弦定理在三角形中的作用;
掌握利用正弦定理解決實際問題的方法。
二、教學(xué)重點:
掌握正弦定理的基本概念及其應(yīng)用;
理解正弦定理在三角形中的作用;
掌握利用正弦定理解決實際問題的方法。
三、教學(xué)難點:
掌握利用正弦定理解決實際問題的方法;
理解正弦定理在三角形中的作用。
四、教學(xué)方法:
講授法;
示范法;
練習(xí)法。
五、教學(xué)過程:
導(dǎo)入(5分鐘)
通過觀察實物或圖片,讓學(xué)生回想起在三角形中哪些數(shù)學(xué)知識點。然后簡單介紹正弦定理,引導(dǎo)學(xué)生理解正弦定理在三角形中的作用。
新知講解(20分鐘)
(1)什么是正弦定理?
正弦定理是指在任意三角形中,任意一邊上的正弦值與另外兩邊的正弦值之比相等。具體表達(dá)式為:a/sin A=b/sin B=c/sin C。
(2)正弦定理的應(yīng)用
利用正弦定理可以解決三角形的任意邊的長度問題,包括已知一邊、一角、一對相鄰邊的長度,求第三邊的`長度;已知兩邊、一個角的正弦值和第三邊的長度,求第二邊的長度。
(3)正弦定理的證明
正弦定理的證明可以采用反證法。首先,根據(jù)余弦定理,我們可以得到以下方程:a^2=b^2+c^2-2bc*cos A。然后,我們可以根據(jù)反證法證明這個方程的兩邊與sin A成比例,即a/sin A=b/sin B=c/sin C。
練習(xí)(20分鐘)
解答學(xué)生的練習(xí)題(20分鐘)
老師應(yīng)該針對學(xué)生的錯誤答案進(jìn)行解答,并給予正確的指導(dǎo)和糾正。對于學(xué)生做對的題目,可以給予表揚和鼓勵。同時,也要引導(dǎo)學(xué)生自己總結(jié)歸納,以便在今后的學(xué)習(xí)中能夠更好地應(yīng)用正弦定理。
歸納總結(jié)(10分鐘)
老師可以讓學(xué)生簡單總結(jié)一下今天的課程內(nèi)容,以便學(xué)生更好地理解和掌握正弦定理??梢詮?qiáng)調(diào)正弦定理的應(yīng)用場景和方法,并鼓勵學(xué)生在今后的學(xué)習(xí)和生活中多多應(yīng)用。
布置作業(yè)(5分鐘)
老師可以根據(jù)今天的課程內(nèi)容布置相應(yīng)的作業(yè),讓學(xué)生在家中進(jìn)行練習(xí)和鞏固。同時,也可以讓學(xué)生回家后和家長一起討論今天所學(xué)的內(nèi)容,以便更好地加深理解。
結(jié)束語(5分鐘)
老師可以簡單總結(jié)一下今天的課程內(nèi)容,并強(qiáng)調(diào)正弦定理在解決實際問題中的重要性和應(yīng)用價值。同時,也可以鼓勵學(xué)生在今后的學(xué)習(xí)中多多應(yīng)用正弦定理,提高自己的數(shù)學(xué)素養(yǎng)和能力。
《正弦定理》說課稿 篇3
一、說教材分析
“解三角形”既是高中數(shù)學(xué)的基本內(nèi)容,又有較強(qiáng)的應(yīng)用性,在這次課程改革中,被保留下來,并獨立成為一章。這部分內(nèi)容從知識體系上看,應(yīng)屬于三角函數(shù)這一章,從研究方法上看,也可以歸屬于向量應(yīng)用的一方面。從某種意義講,這部分內(nèi)容是用代數(shù)方法解決幾何問題的典型內(nèi)容之一。而本課“正弦定理”,作為單元的起始課,是在學(xué)生已有的三角函數(shù)及向量知識的基礎(chǔ)上,通過對三角形邊角關(guān)系作量化探究,發(fā)現(xiàn)并掌握正弦定理(重要的解三角形工具),通過這一部分內(nèi)容的學(xué)習(xí),讓學(xué)生從“實際問題”抽象成“數(shù)學(xué)問題”的建模過程中,體驗 “觀察――猜想――證明――應(yīng)用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。同時在解決問題的過程中,感受數(shù)學(xué)的力量,進(jìn)一步培養(yǎng)學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣和“用數(shù)學(xué)”的意識。
二、說學(xué)情分析
我所任教的學(xué)校是我縣一所農(nóng)村普通中學(xué),大多數(shù)學(xué)生基礎(chǔ)薄弱,對“一些重要的數(shù)學(xué)思想和數(shù)學(xué)方法”的應(yīng)用意識和技能還不高。但是,大多數(shù)學(xué)生對數(shù)學(xué)的興趣較高,比較喜歡數(shù)學(xué),尤其是象本節(jié)課這樣與實際生活聯(lián)系比較緊密的內(nèi)容,相信學(xué)生能夠積極配合,有比較不錯的表現(xiàn)。
三、說教學(xué)目標(biāo)
1、知識和技能:在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運用正弦定理解決一些簡單的解三角形問題。
過程與方法:學(xué)生參與解題方案的探索,嘗試應(yīng)用觀察――猜想――證明――應(yīng)用“等思想方法,尋求最佳解決方案,從而引發(fā)學(xué)生對現(xiàn)實世界的一些數(shù)學(xué)模型進(jìn)行思考。
情感、態(tài)度、價值觀:培養(yǎng)學(xué)生合情合理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思想方法,通過平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識間的聯(lián)系來體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。同時,通過實際問題的探討、解決,讓學(xué)生體驗學(xué)習(xí)成就感,增強(qiáng)數(shù)學(xué)學(xué)習(xí)興趣和主動性,鍛煉探究精神。樹立”數(shù)學(xué)與我有關(guān),數(shù)學(xué)是有用的,我要用數(shù)學(xué),我能用數(shù)學(xué)“的理念。
2、教學(xué)重點、難點
教學(xué)重點:正弦定理的發(fā)現(xiàn)與證明;正弦定理的簡單應(yīng)用。
教學(xué)難點:正弦定理證明及應(yīng)用。
四、說教學(xué)方法與手段
為了更好的達(dá)成上面的教學(xué)目標(biāo),促進(jìn)學(xué)習(xí)方式的轉(zhuǎn)變,本節(jié)課我準(zhǔn)備采用”問題教學(xué)法“,即由教師以問題為主線組織教學(xué),利用多媒體和實物投影儀等教學(xué)手段來激發(fā)興趣、突出重點,突破難點,提高課堂效率,并引導(dǎo)學(xué)生采取自主探究與相互合作相結(jié)合的學(xué)習(xí)方式參與到問題解決的過程中去,從中體驗成功與失敗,從而逐步建立完善的認(rèn)知結(jié)構(gòu)。
五、說教學(xué)過程
為了很好地完成我所確定的教學(xué)目標(biāo),順利地解決重點,突破難點,同時本著貼近生活、貼近學(xué)生、貼近時代的原則,我設(shè)計了這樣的教學(xué)過程:
(一)創(chuàng)設(shè)情景,揭示課題
問題1:寧靜的夜晚,明月高懸,當(dāng)你仰望夜空,欣賞這美好夜色的時候,會不會想要知道:那遙不可及的月亮離我們究竟有多遠(yuǎn)呢?
1671年兩個法國天文學(xué)家首次測出了地月之間的距離大約為 385400km,你知道他們當(dāng)時是怎樣測出這個距離的嗎?
問題2:在現(xiàn)在的高科技時代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機(jī)從山頂一過便可測出,你知道這是為什么嗎?還有,交通警察是怎樣測出正在公路上行駛的汽車的速度呢?要想解決這些問題, 其實并不難,只要你學(xué)好本章內(nèi)容即可掌握其原理。(板書課題《解三角形》)
引用教材本章引言,制造知識與問題的沖突,激發(fā)學(xué)生學(xué)習(xí)本章知識的興趣。
(二)特殊入手,發(fā)現(xiàn)規(guī)律
問題3:在初中,我們已經(jīng)學(xué)習(xí)了《銳角三角函數(shù)和解直角三角形》這一章,老師想試試你的實力,請你根據(jù)初中知識,解決這樣一個問題。在RtSABC中sinA= ,sinB= ,sinC= ,由此,你能把這個直角三角形中的所有的邊和角用一個表達(dá)式表示出來嗎?
引導(dǎo)啟發(fā)學(xué)生發(fā)現(xiàn)特殊情形下的正弦定理
(三)類比歸納,嚴(yán)格證明
問題4:本題屬于初中問題,而且比較簡單,不夠刺激,現(xiàn)在如果我為難為難你,讓你也當(dāng)一回老師,如果有個學(xué)生把條件中的RtSABC不小心寫成了銳角SABC,其它沒有變,你說這個結(jié)論還成立嗎?
此時放手讓學(xué)生自己完成,如果感覺自己解決有困難,學(xué)生也可以前后桌或同桌結(jié)組研究,鼓勵學(xué)生用不同的方法證明這個結(jié)論,在巡視的過程中讓不同方法的學(xué)生上黑板展示,如果沒有用向量的學(xué)生,教師引導(dǎo)提示學(xué)生能否用向量完成證明。
問題5:好根據(jù)剛才我們的研究,說明這一結(jié)論在直角三角形和銳角三角形中都成立,于是,我們是否有了更為大膽的猜想,把條件中的銳角SABC改為角鈍角SABC,其它不變,這個結(jié)論仍然成立?我們光說成立不行,必須有能力進(jìn)行嚴(yán)格的理論證明,你有這個能力嗎?下面我希望你能用實力告訴我,開始。(啟發(fā)引導(dǎo)學(xué)生用多種方法加以研究證明,尤其是向量法,在下節(jié)余弦定理的證明中還要用,因此務(wù)必啟發(fā)學(xué)生用向量法完成證明。)
放手給學(xué)生實踐的機(jī)會和時間,使學(xué)生真正的參與到問題解決的過程中去,讓學(xué)生在學(xué)數(shù)學(xué)的實踐中去感悟和提高數(shù)學(xué)的思維方法和思維習(xí)慣。同時,考慮到有部分同學(xué)基礎(chǔ)較差,考個人或小組可能無法完成探究任務(wù),教師在學(xué)生動手的同時,通過巡查,讓提前證明出結(jié)論的同學(xué)上黑板完成,這樣做一方面肯定了先完成的同學(xué)的先進(jìn)性,鍛煉了上黑板同學(xué)的解題過程的書寫規(guī)范性,同時,也讓從無從下手的'同學(xué)有個參考,不至于閑呆著浪費時間。
問題6:由此,你能否得到一個更一般的結(jié)論?你能用比較精煉的語言把它概括一下嗎?好,這就是我們這節(jié)課研究的主要內(nèi)容,大名鼎鼎的正弦定理(此時板書課題并用紅色粉筆標(biāo)示出正弦定理內(nèi)容)
教師講解:告訴大家,其實這個大名鼎鼎的正弦定理是由伊朗著名的天文學(xué)家阿布爾─威發(fā)z940―998{首先發(fā)現(xiàn)與證明的。中亞細(xì)亞人阿爾比魯尼z973―1048{給三角形的正弦定理作出了一個證明。也有說正弦定理的證明是13世紀(jì)的阿塞拜疆人納速拉丁在系統(tǒng)整理前人成就的基礎(chǔ)上得出的。不管怎樣,我們說在10以前,人們就發(fā)現(xiàn)了這個充滿著數(shù)學(xué)美的結(jié)論,不能不說也是人類數(shù)學(xué)史上的一個奇跡。老師希望21世紀(jì)的你能在今后的學(xué)習(xí)中也研究出一個被后人景仰的某某定理來,到那時我也就成了數(shù)學(xué)家的老師了。當(dāng)然,老師的希望能否變成現(xiàn)實,就要看大家的了。
通過本段內(nèi)容的講解,滲透一些數(shù)學(xué)史的內(nèi)容,對學(xué)生不僅有數(shù)學(xué)美得熏陶,更能激發(fā)學(xué)生學(xué)習(xí)科學(xué)文化知識的熱情。
(四)強(qiáng)化理解,簡單應(yīng)用
下面請大家看我們的教材2―3頁到例題1上邊,并自學(xué)解三角形定義。
讓學(xué)生看看書,放慢節(jié)奏,有利于學(xué)生消化和吸收剛才的內(nèi)容,同時教師可以利用這段時間對個別學(xué)困生進(jìn)行輔導(dǎo),以減少掉隊的同學(xué)數(shù)量,同時培養(yǎng)學(xué)生養(yǎng)成自覺看書的好習(xí)慣。
我們學(xué)習(xí)了正弦定理之后,你覺得它有什么應(yīng)用?在三角形中他能解決那些問題呢? 我們先小試牛刀,來一個簡單的問題:
問題7:(教材例題1)SABC中,已知A=30?,B=75?,a=40cm,解三角形。
(本題簡單,找兩位同學(xué)上黑板完成,其他同學(xué)在底下練習(xí)本上完成,同學(xué)可以小聲音討論,完成后教師根據(jù)學(xué)生實踐中發(fā)現(xiàn)的問題給予必要的講評)
充分給學(xué)生自己動手的時間和機(jī)會,由于本題是唯一解,為將來學(xué)生感悟什么情況下三角形有唯一解創(chuàng)造條件。
強(qiáng)化練習(xí)
讓全體同學(xué)限時完成教材4頁練習(xí)第一題,找兩位同學(xué)上黑板。
問題8:(教材例題2)在SABC中a=20cm,b=28cm,A=30?,解三角形。
例題2較難,目的是使學(xué)生明確,利用正弦定理有兩種可能,同時,引導(dǎo)學(xué)生對比例題1研究,在什么情況下解三角形有唯一解?為什么?對學(xué)有余力的同學(xué)鼓勵他們自學(xué)探究與發(fā)現(xiàn)教材8頁得內(nèi)容:《解三角形的進(jìn)一步討論》
(五)小結(jié)歸納,深化拓展
1、正弦定理
2、正弦定理的證明方法
3、正弦定理的應(yīng)用
4、涉及的數(shù)學(xué)思想和方法。
師生共同總結(jié)本節(jié)課的收獲的同時,引導(dǎo)學(xué)生學(xué)會自己總結(jié),讓學(xué)生進(jìn)一步回顧和體會知識的形成、發(fā)展、完善的過程。
(六)布置作業(yè),鞏固提高
1、教材10頁習(xí)題1、1A組第1題。
2、學(xué)有余力的同學(xué)探究10頁B組第1題,體會正弦定理的其他證明方法。
證明:設(shè)三角形外接圓的半徑是R,則a=2RsinA,b=2RsinB, c=2RsinC
對不同水平的學(xué)生設(shè)計不同梯度的作業(yè),尊重學(xué)生的個性差異,有利于因材施教的教學(xué)原則的貫徹。
(七)板書設(shè)計:
(略)
正弦定理余弦定理說課稿 篇4
"余弦定理"是人教a版數(shù)學(xué)第必修5主要內(nèi)容之一,是解決有關(guān)斜三角形問題的兩個重要定理之一,也是初中"勾股定理"內(nèi)容的直接延拓,它是三角函數(shù)一般知識和平面向量知識在三角形中的具體運用,是解可轉(zhuǎn)化為三角形計算問題的其它數(shù)學(xué)問題及生產(chǎn)、生活實際問題的重要工具,因此具有廣泛的應(yīng)用價值。本節(jié)課是"正弦定理、余弦定理"教學(xué)的第二節(jié)課,其主要任務(wù)是引入并證明余弦定理,在課型上屬于"定理教學(xué)課".
這堂課并不是將余弦定理全盤呈現(xiàn)給學(xué)生,而是從實際問題的求解困難,造成學(xué)生認(rèn)知上的沖突,從而激發(fā)學(xué)生探索新知識的強(qiáng)烈欲望。另外,本節(jié)與教材其他課文的共
性是都要掌握定理內(nèi)容及證明方法,會解決相關(guān)的問題。
下面說一說我的教學(xué)思路。
通過對教材的分析鉆研制定了教學(xué)目的:
1.掌握余弦定理的內(nèi)容及證明余弦定理的向量方法,會運用余弦定理解決兩類基本的解三角形問題。
2.培養(yǎng)學(xué)生在方程思想指導(dǎo)下解三角形問題的運算能力。
3.培養(yǎng)學(xué)生合情推理探索數(shù)學(xué)規(guī)律的思維能力。
4.通過三角函數(shù)、余弦定理、向量的數(shù)量積等知識的聯(lián)系,來理解事物普遍聯(lián)系與辯證統(tǒng)一。
余弦定理揭示了任意三角形邊角之間的客觀規(guī)律,是解三角形的重要工具。余弦定理是初中學(xué)習(xí)的勾股定理的拓廣,也是前階段學(xué)習(xí)的三角函數(shù)知識與平面向量知識在三角形中的交匯應(yīng)用。本節(jié)課的重點內(nèi)容是余弦定理的發(fā)現(xiàn)和證明過程及基本應(yīng)用,其中發(fā)現(xiàn)余弦定理的過程是檢驗和訓(xùn)練學(xué)生思維品質(zhì)的重要素材。
余弦定理是勾股定理的推廣形式,勾股定理是余弦定理的特殊情形,勾股定理在余弦定理的發(fā)現(xiàn)和證明過程中,起到奠基作用,因此分析勾股定理的結(jié)構(gòu)特征是突破發(fā)現(xiàn)余弦定理這個難點的關(guān)鍵。
在確定教學(xué)方法之前,首先分析一下學(xué)生:我所教的是課改一年級的學(xué)生。他們的基礎(chǔ)比正常高中的學(xué)生要差許多,拿其中一班學(xué)生來說:數(shù)學(xué)入學(xué)成績及格的占50%
左右,相對來說教材難度較大,要求教師吃透教材,選擇恰當(dāng)?shù)慕虒W(xué)方法和教學(xué)手段把知識傳授給學(xué)生。
根據(jù)教材和學(xué)生實際,本節(jié)主要采用"啟發(fā)式教學(xué)"、"講授法"、"演示法",并采用電教手段使用多媒體輔助教學(xué)。
1.啟發(fā)式教學(xué):
利用一個工程問題創(chuàng)設(shè)情景,啟發(fā)學(xué)生對問題進(jìn)行思考。在研究過程中,激發(fā)學(xué)生探索新知識的強(qiáng)烈欲望。
2. 練習(xí)法:通過練習(xí)題的訓(xùn)練,讓學(xué)生從多角度對所學(xué)定理進(jìn)行認(rèn)識,反復(fù)的練習(xí),體現(xiàn)學(xué)生的主體作用。
3. 講授法:充分發(fā)揮主導(dǎo)作用,引導(dǎo)學(xué)生學(xué)習(xí)。
4. 演示法:利用動畫、圖片,激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動學(xué)生積極性。
這節(jié)課準(zhǔn)備的器材有:計算機(jī)、大屏幕。
1. 復(fù)習(xí)正弦定理(2分鐘):安排一名同學(xué)上黑板寫正弦定理。
2. 設(shè)計精彩的新課導(dǎo)入(5分鐘):利用大屏幕演示一座山,先展示,后出現(xiàn)b、c,
再連成虛線,并閃動幾下,閃動邊ab、ac幾下,再閃動角a的陰影幾下,可測得
ac、ab的長及∠a大小。
問你知道工程技術(shù)人員是怎樣計算出來的嗎?
一下子,學(xué)生的注意力全被調(diào)動起來,學(xué)生一定會采用正弦定理,但很快發(fā)現(xiàn)
∠b、∠c不能確定,陷入困境當(dāng)中。
3. 探索研究,合理猜想。
當(dāng)ab=c,ac=b一定,∠a變化時,a可 -2ab的系數(shù)-1、0、1與a=0、∏/2、∏之間存在對應(yīng)關(guān)系。
教師指導(dǎo)學(xué)生由特殊到一般,經(jīng)比較分析特例,概括出余弦定理,這種促使學(xué)生主動參與知識形成過程的教學(xué)方法,既符合學(xué)生學(xué)習(xí)的認(rèn)知規(guī)律,又突出了學(xué)生的主體地位。"授人以魚",不如"授人以漁",引導(dǎo)學(xué)生發(fā)現(xiàn)問題,探究知識,建構(gòu)知識,對學(xué)生
來說,既是對數(shù)學(xué)研究活動的一種體驗,又是掌握一種終身受用的治學(xué)方法。
4. 證明猜想,建構(gòu)新知
接下來就是水到渠成,現(xiàn)在余弦定理還需要進(jìn)一步證明,要符合數(shù)學(xué)的嚴(yán)密邏輯推理,鍛煉學(xué)生自己寫出定理證明的已知條件和結(jié)論,請一位學(xué)生到黑板寫出來,并請同學(xué)們自己進(jìn)行證明。教師在課中進(jìn)行指導(dǎo),針對出現(xiàn)的問題,結(jié)合大屏幕打出的正
確過程進(jìn)行講解。
在大屏幕打出余弦定理,為了促進(jìn)學(xué)生記憶,在黑板上讓學(xué)生背著寫出定理,也是當(dāng)
堂鞏固定理的方法。
5. 操作演練,鞏固提高
定理的應(yīng)用是本節(jié)的重點之一。我分析題目,請同學(xué)們進(jìn)行解答,在難點處進(jìn)行點撥。以第二題為例,在求a的過程中學(xué)生會產(chǎn)生分歧,一部分采用正弦定理,一部分采用余弦定理,其實兩種做法都可得到正確答案,形成解法一和解法二。在這道例題中進(jìn)行發(fā)散思維的訓(xùn)練,(在上例中,能否既不使用余弦定理,也不使用正弦定理,
求出∠a?)
啟發(fā)一:a視為b 與c兩點間的距離,利用b、c的坐標(biāo)構(gòu)造含a的等式
啟發(fā)二:利用平移,用兩種方法求出c’點的坐標(biāo),構(gòu)造等式。使學(xué)生的思維活躍,漸入新的境界。每次啟發(fā),或是針對一般原則的提示,或是在學(xué)生出現(xiàn)思維盲點
處點撥,或是學(xué)生"簡單一跳未摘到果子"時的及時提醒。
6. 課堂小結(jié):
告訴學(xué)生余弦定理是任何三角形邊角之間存在的共同規(guī)律,勾股定理是余弦定理
的特例。
7. 布置作業(yè):書面作業(yè) 3道題
作業(yè)中注重余弦定理的應(yīng)用,重點培養(yǎng)解決問題的能力。
以上是我的一點粗淺的認(rèn)識,如有不對之處,請老師評委們給與指教,我的課說完了,謝謝各位。
《正弦定理》的說課稿 篇5
大家好,今天我說課的題目是《正弦定理》。
新課標(biāo)指出:高中教育屬于基礎(chǔ)教育,具有基礎(chǔ)性,且具有多樣性與選擇性,使不同的學(xué)生在數(shù)學(xué)上得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過程等幾個方面展開我的說課。
一、說教材
教師對教材的掌握程度,是評判一位教師是否能上好一堂課的基本標(biāo)準(zhǔn)。在正式內(nèi)容開始之前,我要先談一談對教材的理解。
《正弦定理》是人教A版必修5第一章第一節(jié)的內(nèi)容,其主要內(nèi)容是正弦定理及其應(yīng)用。此前學(xué)習(xí)了三角函數(shù)的相關(guān)知識,且積累很多的證明、推導(dǎo)的經(jīng)驗,為本節(jié)課的學(xué)習(xí)都起到了一定的鋪墊作用。本節(jié)課的學(xué)習(xí),也為以后學(xué)習(xí)和解決生活中的一些問題提供幫助。因此本節(jié)的學(xué)習(xí)有著極其重要的地位。
二、說學(xué)情
合理把握學(xué)情是上好一堂課的基礎(chǔ),下面我來談?wù)剬W(xué)生的實際情況。
這一階段的學(xué)生已經(jīng)具備了一定的分析問題、解決問題的能力,且在知識方面也有了一定的積累。所以,教學(xué)中,利用學(xué)生的特點以及原有經(jīng)驗進(jìn)行教學(xué),增強(qiáng)學(xué)生的課堂參與度。
三、說教學(xué)目標(biāo)
根據(jù)以上對教材的分析以及對學(xué)情的把握,我制定了如下三維教學(xué)目標(biāo):
(一)知識與技能
能證明正弦定理,并能利用正弦定理解決實際問題。
(二)過程與方法
通過正弦定理的'推導(dǎo)過程,提高分析問題、解決問題的能力。
(三)情感、態(tài)度與價值觀
在正弦定理的推導(dǎo)過程中,感受數(shù)學(xué)的嚴(yán)謹(jǐn),提升對數(shù)學(xué)的興趣。
四、說教學(xué)重難點
我認(rèn)為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說一定要突出重點、突破難點。而教學(xué)重點的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點為:正弦定理。難點:正弦定理的證明。
五、說教法和學(xué)法
現(xiàn)代教學(xué)理論認(rèn)為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動都必須以強(qiáng)調(diào)學(xué)生的主動性、積極性為出發(fā)點。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點和學(xué)生的年齡特征,本節(jié)課我采用講授法、啟發(fā)法、練習(xí)法、小組合作、自主探究等教學(xué)方法。
六、說教學(xué)過程
在這節(jié)課的教學(xué)過程中,我注重突出重點,條理清晰,緊湊合理。各項活動的安排也注重互動、交流,最大限度的調(diào)動學(xué)生參與課堂的積極性、主動性。
(一)導(dǎo)入新課
首先是導(dǎo)入環(huán)節(jié),我將采用溫故知新的導(dǎo)入方式。
復(fù)習(xí)初中學(xué)習(xí)的任意三角形中的邊和角存在什么樣的關(guān)系。在學(xué)生回顧之后,再提問:能否得到這個邊、角關(guān)系準(zhǔn)確量化的表示?引出本節(jié)課學(xué)習(xí)的內(nèi)容——正弦定理。
通過溫故知新的導(dǎo)入方式,能為本節(jié)課的后續(xù)的教學(xué)做好鋪墊。
(二)講解新知
接下來是新課講授環(huán)節(jié),我將分為四部分,分別為在直角三角形中推導(dǎo)正弦定理、在銳角三角形中推導(dǎo)正弦定理、在鈍角三角形中推導(dǎo)正弦定理以及正弦定理的應(yīng)用。
素的過程叫做解三角形。
在介紹完正弦定理后,接下來介紹正弦定理的應(yīng)用。通過提問:我們利用正弦定理可以解決一些怎樣的解三角形問題呢?總結(jié):如果已知三角形的任意兩個角與一邊,由三角形內(nèi)角和定理,可以計算出三角形的另一角,并由正弦定理計算出三角形的另兩邊;如果已知三角形的任意兩邊與其中一邊的對角,應(yīng)用正弦定理,可以計算出另一邊的對角的正弦值,進(jìn)而確定這個角和三角形其他的邊和角。
整節(jié)課,本著學(xué)生為主體,教師為主導(dǎo)的設(shè)計理念,結(jié)合教學(xué)內(nèi)容和學(xué)生的特點,利用學(xué)生已有的知識經(jīng)驗,采用層次性的問題,一步步引導(dǎo)學(xué)生思考交流、發(fā)現(xiàn)知識。并且在整個過程中,講授法、引導(dǎo)法、合作探究等多種教學(xué)方法的使用,不但讓學(xué)生學(xué)會知識,也培養(yǎng)學(xué)生的學(xué)習(xí)能力。通過這樣的設(shè)計,提升學(xué)生學(xué)習(xí)數(shù)學(xué)的信心,提高學(xué)習(xí)數(shù)學(xué)的興趣。
(三)課堂練習(xí)